12 research outputs found

    The Generalised Liar Paradox: A Quantum Model and Interpretation

    Full text link
    The formalism of abstracted quantum mechanics is applied in a model of the generalized Liar Paradox. Here, the Liar Paradox, a consistently testable configuration of logical truth properties, is considered a dynamic conceptual entity in the cognitive sphere. Basically, the intrinsic contextuality of the truth-value of the Liar Paradox is appropriately covered by the abstracted quantum mechanical approach. The formal details of the model are explicited here for the generalized case. We prove the possibility of constructing a quantum model of the m-sentence generalizations of the Liar Paradox. This includes (i) the truth-falsehood state of the m-Liar Paradox can be represented by an embedded 2m-dimensional quantum vector in a (2m)^m dimensional complex Hilbert space, with cognitive interactions corresponding to projections, (ii) the construction of a continuous 'time' dynamics is possible: typical truth and falsehood value oscillations are described by Schrodinger evolution, (iii) Kirchoff and von Neumann axioms are satisfied by introduction of 'truth-value by inference' projectors, (iv) time invariance of unmeasured state.Comment: 13 pages, to be published in Foundations of Scienc

    How to play two-players restricted quantum games with 10 cards

    Full text link
    We show that it is perfectly possible to play 'restricted' two-players, two-strategies quantum games proposed originally by Marinatto and Weber having as the only equipment a pack of 10 cards. The 'quantum board' of such a model of these quantum games is an extreme simplification of 'macroscopic quantum machines' proposed by one of the authors in numerous papers that allow to simulate by macroscopic means various experiments performed on two entangled quantum objectsComment: 4 pages, 3 figure

    Quantum Experimental Data in Psychology and Economics

    Full text link
    We prove a theorem which shows that a collection of experimental data of probabilistic weights related to decisions with respect to situations and their disjunction cannot be modeled within a classical probabilistic weight structure in case the experimental data contain the effect referred to as the 'disjunction effect' in psychology. We identify different experimental situations in psychology, more specifically in concept theory and in decision theory, and in economics (namely situations where Savage's Sure-Thing Principle is violated) where the disjunction effect appears and we point out the common nature of the effect. We analyze how our theorem constitutes a no-go theorem for classical probabilistic weight structures for common experimental data when the disjunction effect is affecting the values of these data. We put forward a simple geometric criterion that reveals the non classicality of the considered probabilistic weights and we illustrate our geometrical criterion by means of experimentally measured membership weights of items with respect to pairs of concepts and their disjunctions. The violation of the classical probabilistic weight structure is very analogous to the violation of the well-known Bell inequalities studied in quantum mechanics. The no-go theorem we prove in the present article with respect to the collection of experimental data we consider has a status analogous to the well known no-go theorems for hidden variable theories in quantum mechanics with respect to experimental data obtained in quantum laboratories. For this reason our analysis puts forward a strong argument in favor of the validity of using a quantum formalism for modeling the considered psychological experimental data as considered in this paper.Comment: 15 pages, 4 figure

    Quantum probabilities in competing lizard communities

    No full text
    corecore